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ABSTRACT
-

New mission requirements dictate the need to improve the
P-3's defensive maneuvering capabilities. Research was

conducted to find viable methods of increasing the current

roll response of the P-3. First, a flight simulator was u.¢

utilized to determine an initial "target&; roll response.
Next, a computer code was used to evaluate the aerodynanmic
effect of varying the size and deflection of the aileron.
These results, along with the flight simulator tests, were
used to analyze the requirements to reach the target response.
Several ways to achieve this goal are discussed. It was found

Ve
that by increasing the aileron deflection from 120! to *2
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and increasing the aileron chord by 50%, a 58% increase in
could be realized. This does not reach the goal of a 100%
increase in C{, but, it does yield a large increase in lateral
control response. An increase in aileron size and deflection

along with some of the other suggested modifications would
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I. INTRODUCTION

A. BACKGROUND

The P-3 Orion aircraft has been successfully operated in
the fleet since 1962. However, new mission requirements
dictate the need to 1improve the defensive maneuvering
capabilities of the aircraft. The Navy 1is currently
investigating several ways to accomplish this goal.

As part of this investigation, Patrol Sguadron Thirty-One
(VP-31) at the Naval Air Station (NAS) Moffett Field, CA. has
initiated a study into the feasibility of increasing the
current roll response characteristics of the P-3C aircraft.
Due to the age of the airplane, any potential modifications
must be relatively inexpensive to incorporate. Additionally,
the resulting improvements must justify the complexities
reguired for the design changes and outweigh any penalties
arising from these modifications.

The general consensus has been that there are no
reasonable modifications that would provide the desired
improvements at a justifiable cost. However, before making
a final decision concerning potential modifications, VP-31
wanted to closely examine possible solutions to the problem.

The squadron contacted the United States Naval Postgraduate

School (USNPGS) to provide assistance in this study.




B. PURPOSE

The purpose of this thesis was to provide assistance to
VP-31 in their efforts to enhance the defensive maneuvering
capability of the P-3 aircraft. Research was conducted to
determine viable methods of increasing the current roll
response characteristics of the P-3C aircraft. Each of these
methods was evaluated to predict the likely improvements that
could be realized. Due to the reasons stated above, several
obviously complex and expensive solutions, such as computer
operated systems and deflected engine thrust, were not
evaluated. However, once these options were disregarded,
comrlexity and expense were no longer considered to be factors

during this study.

C. DESCRIPTION OF THE P-3C AIRCRAFT

The P-3C aircraft is flown by the Navy in primarily the
Patrol and Anti-Submarine Warfare (ASW) missions. Figures 1
and 2 show the P-3C aircraft and a dimensional wing drawing,
respectively. The aircraft has four turboprop engines mounted
on a low wing with a maximum recommended take-off gross weight
of 135,000 1lbs. The P-3 is equipped with a conventional,
hydraulicaliy boosted flight control system. An Automatic
Flight Control Syster (AFCS) may be utilized to concrol and

stabilize the aircraft in all three axes (pitch, roll and yaw)

during long transits or low altitude maneuvering.
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Figure

P-3C Aircraft
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Figure 2

Wing Planform of the P-3C Aircraft

Each of the control surfaces (aileron, rudder and
elevator) includes mechanically operated trim tabs.
Additionally, high-lift Fowler flaps (illustrated in Figure
3) are incorporated inboard on the wings. The wing consists
of symmetrical NACA airfoils. At the root is the NACA 0014
airfoil; the wing sections narrow, linearly, to the NACA 0012
airfeil at the wingtip.

The current operating envelope of the aircraft pronibits
bank angles in excess of 65° for roll maneuvering and 70° for
coordinated turns. Additionally, the airframe is limited to
load factors between a negative 1 G and positive 3 G's for
most operational gross weights.

A complete description of the P-3C aircraft and operating

limitations can be found in Ref. 1. Detailed descriptions of




the F-3 flight control system and wing flaps can be found in

Refs. 2, 3 and 4.
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Figure 3
High-Lift Fowler Flap
Installation of the P-3C Aircraft
(From Ref. 3)

D. METHOD OF EVALUATION

Initial research identified several methods for increasing
the lateral control response of an airplane. A select group
of these methods was chosen for further investigation. As a

first step in this investigation, it was necessary to

determine an initial goal for the roll response improvement.




A flight simulator was utilized to qualitatively determine
this "target" roll response increase and to quantify the
resulting lateral characteristics. After the initial "target"
response was determined, a computer airfoil code was used to
evaluate the aerodynamic effect of airfoil sections with
various sizes and deflections of the trailing edge control
surfaces. These airfoil sections were then mathematically
combined to determine the rolling moment coefficients for a
variety of wing configurations. These results, in conjunction
with the flight simulator tests, were used to analyze the
modifications required to reach the desired lateral response.

Throughout this evaluation, several factors were not
investigated, even though they are obviously important in the
consideration of increased lateral response. The primary
factor that was neglected was structural integrity. Neither
the structural impact of any modifications to be made to the
aircraft, nor the effect of the increased structural loads on
the airframe due to the more aggressive maneuvering, were

evaluated. Other 1less critical factors that were not

considered will be discussed as appropriate.




I1. PRELIMINARY RESEARCH

Literature research was c¢onducted to determine what
modifications, if any, had been made to other transport type
aircraft to increase its roll rate or roll acceleration.
Additionally, current technology design standards were
investigated to discover the options available 1 the area of
lateral control response.

Researcn revealed no historical data on increasing the
roll response of a transport type aircraft. There were,
however, two reports on increasing the 1lateral response
characteristics of fighter type aircraft. Although the
mission for fighter aircraft is much different than that for
the P-3, the modifications and results proved to be very
informative. These reports will be discussed as well as the
results from some previous P-3 flight tests. Finally, The
impact of these reports on the P-3 study will also be

discussed.

A, F/A-18A AIRPLANE WITH ROLL RATE IMPROVEMENTS INCORPORATED

Reference 5 discusses tests conducted by the Navy at the
Naval Air Test Center (NATC), to evaluate the roll rate
improvements incorporated in the F/A-18A Aircraft. According
to the findings of the report, the F/A-18A aircraft had
exhibited serious problems with inadequate roll performance.

McDonnell Aircraft Company incorporated several major hardware

7




changes to improve the lateral performance characteristics of
the aircraft. These changes included:

1. An increase in aileron size by extending the aileron
surface to the wingtip.

2. Modifications to the wing structure designed to
increase the wing stiffness.

3. Trailing edge flaps were moved aft 1.5 in. at zero
deflection to allow for increased flap range from 8° trailing
edge up (TEU) to 45° trailing edge down (TED). These values
were previously 0° TEU to 45° TED. This change allows for
+16° of ¢ fferential trailing edge flaps during rolls.

4. An increase in differential tail deflection authority
from +£20° to *26°.

5. In addition to the hardware changes, many software

modifications were necessitated by the various roll rate

improvements. These changes will not be discussed since they

are not applicable to the P-3.

The test results showed that the maximum steady state roll
rates and time~to-bank to 90° were significantly improved
throughout most of the flight envelcpe that was investigated.
However, the resulting characteristics were still not adequate

for the requirements of the present day fighter aircraft.




B. F~48 AIRPLANE LATERAL/DIRECTIONAL FLIGHT CONTROL SYSTEM

MODIFICATION

Reference 6 discusses tests conducted by NATC to evaluate
the modifications to the lateral/directional flight control
system (Roll Mod) of the F-4S aircraft. According to this f
report, the F-4S exhibited sluggish lateral characteristics |
in the power approach (PA) configuration due to the
installation of leading edge slats. Several modifications
were incorporated into the roll and yaw axes of the AFCS.
These changes included:

1. Addition of a roll rate gyro feedback signal to the

rudder series servo.
2. Reduction of the yaw rate gyro feedback signal to the
rudder series servo.
3. Addition of a roll stick gain to lateral series servo.
The tests results indicated that the incorporation of the

koll Mod in the F-4S airplane improved lateral control.

C. PREVIOUS TESTS8 CONDUCTED ON THE P-3 AIRCRAFT
1. Removal of the Aileron/Rudder Interconnect from the
P-3B/C Aircraft
Reference 7 discusses tests conducted by NATC to
determine the effect of removing the aileron/rudder

interconnect (ARI) from the P-3 aircraft. The following is

a summary of this report.




An ARI 1is included as part of the lateral control
system of the P-3 aircraft. The primary purpose of the ARI
is to improve aileron control wheel centering and to reduce
the rudder force required in shallow turns by means of a
spring in an interconnection cartridge. Because of numerous
instances of aileron/rudder control binding and jamming
associated with the ARI, the Navy was considering removing the
ARI.

An evaluation of the P-3 was counducted to determine if
the removal of the ARI resulted in a change to the lateral
flying qualities. According to the report, none of the four
test pilots involved in the testing was able to perceive a
change in the lateral-directional fiying qualities throughout
the qualitative phase of tests. It was concluded that the
removal of the ARI had no significant effect on the lateral
control effectiveness of the P-3 airplane during mission
tasks.

2. P-3 Flight simulators

Reference 8 discusces previous testing conducted to
verify the flight fidelity characteristics of the P-3 Flight
Simulators that were used for this investigation. This report
was used extensively for comparison between the original data
and results from this evaluation and will be discussed as

appropriate. The report includes both simulator and actual

aircraft test data.




D. ANALYSIS8 OF RESEARCH

Several of the modifications that were made to the fighter
aircraft could certainly be considered for the P-3,
particularly in the area of aileron sizing and flight control
modifications. The modifirations were not sufficient enough
to create a tactical fighter. However, the desired purpose
for the P-3 lateral respons.e improvements is to enhance the
defensive maneuvering capabilities of the aircraft. Although
the idea of taking advantage of the ARI initially appeared to
be a plausible option, the previous tests show that this is
not the case.

There are several other options to increase the lateral
response in addition to those previously discussed. Those
that were evaluated will be discussed as appropriate. Some
methods that were not evaluated but appear viable include the
addition of stall fences and spoilers. Although no background
information has been found, it was learned from a retired Navy
pilot that the addition of stall fences produced a significant
improvement in the lateral response of the S-2 aircraft
several years ago.

Spoilers have been tried and proven as roll generating
devices. Although spoilers were not evaluated directly, the
results encountered during rolling moment coefficient tests
(discussed later) can be applied to spoilers as well as to
other lateral control surfaces. As with ailerons, spoilers

increase the rolling moment of the wing. It is recommended

11




that further evaluation be conducted to determine the effect

of both stall fences and spoilers.

12




III. FLIGHT BIMULATOR TESTS

A significant increase in roll rate and acceleration is
desired for defensive maneuvering. However, more sensitive
lateral control can lead to the degradation of many of the
other mission requirements of the P-3. Anticipated problems
include an increase in the workload as well as a decrease in
the accuracy while performing ‘“he precise heading and lineup
changes required during approaches and operational ASW
maneuvers.

Two P-3 flight simulators were utilized to provide a
quantitative investigation of various changes which might
increase the lateral response of the aircraft. Throughout the
tests, all changes were qualitatively evaluated with respect
to aircraft response and pilot workload. This investigation
permitted determination of an initial "target" roll response,
representing a realistic compromise between the increased roll
rate and the resulting higher pilot workload. The changes to
be investigated were simulated by modifying various portions
of the simulator software. These software modifications will
be described as they are discussed in the report. During the
tests, software modifications were incorporated by the flight
lead engineer of the Link Tactical Military Simulation Corp.

Only one modification was evaluated at a time to determine the

effect of each individual change. Obviously, a combination




of these charges could be used to create larger rolling
moments.

Nine hours of tests were conducted during two separate
simulator periods. Two Navy F-3 pilots performed different
mission maneuvers and test inputs for each of the lateral axis

changes.

A. DESCRIPTION OF TEST EQUIPMENT
1. Operational Flight Trainers (OFT)

The simulators used were Device 2F87(F) OFT Nos. two
and three, operated by COMPATWINGSPAC at NAS Moffett Field,
CA. <Tach of the OFT's incorporates a P-3C flight compartment
facsimile, mounted on a six-degree-of-freedom motion base.
The flight compartment includes an instructor station, pilot
and engineer stations, and additional seats for observers.
The flight compartment arrangement is illustrated in Figure
4. A computer generated visual display system is mounted on
the flight compartment and was used to provide the necessary
visual cues to the pilots throughout testing. A detailed
description of the OFT's can be found in Ref. 9.

2. Data Acquisition Equipment

The amount of time available to conduct the tests was
limited because of the operaticnal status of the flight
simulators. This limitation restricted the scope of these
tests and precluded elaborate instrumentation. Most of the

data was obtained using hand-held stopwatches and was recorded

14
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P-3C Operational Flight Trainer
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(From Ref. 9)

manually. Additionally, included as part of the instructor's
station were two Cathode Ray Tubes (CRT's) which provided
continually updated information about the instantaneous flight
condition of the trainer. The flight conditions page proved
to be especially helpful during steady state conditions. A
sample copy is shown in Table I. Hard copies of this page
were easily made, but required excessive time to print.
Initially, several hard copies of each maneuver were printed

to provide a rough time history. However, this procedure

became too time consuming. Therefore, during the latter




TABLE I

SAMPLE COPY OF THE FLIGHT CONDITIONS PAGE

NOTE: VALUES INVALID DURING A1G - TO USE COL MARKER SU FOR SNAPS SET

MALF THUHMBUHEEL SETTINGS: NAU/COMM
822 BARD ALTIMETER VIBRATOR UNMF -] VOR 113.99 1CS 0
822 BARD ALTIMETER VIBRATOR UHF -2 TR 123.20)
HALFS PENDING (TIMHED): TACAN TR o123 IFF TRANSPONDER
ADF ADF @764 S
09: 09 MASTER OFF
00:00 UHF -1 TRG 3S3.60
00: 008 URF -2 OFF MODE -] @3
-3 oi10e
HF -1 OFF -4y OFF
TIMER ©2:90: 90 MET ©90:02:12 HF -2 OFF -C ON
FLIGHRY CONDITIONS PAGE
FLIGHT TIMER 00:00:20 MET TIMER 00:82:13
CONF IGURATION/CONDITIONS
GROSS UVEIGHT 88S76 PRESSURE ALTITUDE ule.s
C.G. 2u. 80 CALIBRATED RIRSPD 2098.6
FLAP POSITION 8.2 EOQUIVALENT RIRSPD 209.53
GEAR POSITION 0.0 TRUE AIRSPD (F/S) 356. 19
MACH NUMBER 2.32
FLIGHT/AERD
PITCH ANGLE 9.8 BANK ANGLE -2.5
ANGLE OF ATTACK 1.3 SIDESLIP 8.9
HEADING ANGLE 83.uy RATE OF CLIMB (FPM) -194
PITCH VELOCITY (D/S) 0.0sS PITCH ACCELERATION -9.08388
ROLL VELOCITY (D/S) 8.625 ROLL ACCELERATION B.0126
YAY UVELOCITY (D/S) -8.878 YAW ACCELERATION -8.80836
NORTH-SOUTH VELOCITY 3sy. 31 NORTH-SOUTH ACCEL ~-1.336
EAST-UEST VELOCITY -35.89 EAST-WEST ACCELERATION -9.060
VERTICAL VELDCITY 2.94 VERTICPL ACCELERATION -y, 49?7
LONGITUDINAL ACCEL -B. 8229 TOTAL PITCHING MOMENT -33983
LATERRL ACCEL 9.0019 TOTAL ROLLING MOMENT 10688
VERTICAL ACCEL (G°'S) -1.1816 TOTAL YAUING MOMENT -6771
CONTROL LOADING
ELEVATOR POSITION e.12 ELEVATOR TRIM TRB 7.e5
COLUMN FORCE 2.uy COLUMN POSITION 6.17
RUDDER POSITION 2.ue RUDDER TRIM TARB -8.18
PEDAL FORCE e.80 PEDAL POSITION 0.8y
RILERON POSITION 9.82 AILERON TRIHM TAB -0.959
WHEEL FORCE .58 UHEEL POSITION 3.84
ENGINES
TOTAL THRUST 2784 THRUST COEFFICIENT 0.01
THROTTLE ANGLE 4y?.y LATERAL T.C. 2.02
ENGINE S.H.P. e ENGINE T.1.T7. €62
VEIGHT AND BALANCE
IX%X INERTIR (/ 1824) 817 vy INERTIA (/7 102u) B85S
122 INERTIA (/ 1824) 164S CROSS PRCOUCT/INERTIA uz91e

COLSNP TRUE




phases of the data collection, hard copies were printed for
only the steady state condition maneuvers.

In addition to the flight compartment, the simulator
hardware consists of digital computers, interface equipment
and associated electronics equipment required to simulate the
aircraft. As part of this equipment, there is an interactive
ccmputer which was used to make the software changes during
the tests. This allowed for quick modifications with minimum

stop time and significant flexibility throughout testing.

B. METHOD OF TEST
1. General) Test Maneuvers

The roll response testing was conducted in accordance
with procedures in the USNTPS Fixed Wing Stability and Control
Flight Test Manual (Ref. 10). The roll rate and acceleration
for each of the software changes, as well as a baseline
condition (the unmodified simulator), were evaluated in two
ways. First, the aircraft was established in a straight and
level static flight condition. A full lateral step input was
applied to the control yoke while maintaining altitude and
power setting. A stopwatch was used to determine the elapsed
time from 0° to 60° angle of bank. Although this does not
correspond to a steady state roll rate, it does present a
consistent quantitative methcd for comparison between the
various simulated conditions. This maneuver was performed in

both the left and right directions.

17




The next maneuver was initiated from a steady, level
60° angle of bank turn. A full lateral control step input was
then applied, to the control yoke, in the opposite direction
while maintaining altitude and power setting. A stopwatch was
used to determine the elapsed time from 60° to 50°, and from
0* to 60° in the opposite direction. Although not a precise
indicator of roll acceleration, the time to roll through the
initial 10° does provide a consistent quantitative method for
comparing roll acceleration between the different simulated
conditions. It was found that the aircraft had reached a
steady state roll rate when passing through 0° angle of bank.
Therefore, the time to roll thrcugh the final 60° provided a
relatively accurate value of the steady state roli rate. The
flight conditions page was used to ve;ify the computed steady
state valu;s. The tests and test conditions that were
conducted are summarized in Appendix A, Table I. A tabulated
summary of the results from the stopwatch measurements and
flight conditions pages is shown in Appendix A, Table II.

Definitions of the maneuver descriptions and simulator
conditions used througﬁout this report are shown in Tables TI
and III respectively. All tests were conducted at a gross
weight of approximately 92,000 1lb. with a CG of about 24.5%
Mean Aerodynamic Chord (MAC). The landing gear and flaps were
up except where required for approaches, landings and take-
offs, as well as for the split-flap evaluation. Neither the

flight conditions page, nor stop watch times, were obtained
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TABLE II
MANEUVER DESCRIPTIONS

INDICATE ROLLS INITIATED FROM EITHER LEVEL FLIGHT OR
A STEADY €0 DEG BANK IN THE RIGHT OR LEFT DIRECTIONS
AS INDICATED (THRODGHOUT THE REPCRT, VALUES LESS
THAN 0 REPRESENT MAREUVERS TO THE LEFT)

QUALITATIVE EVALOATION OF PRECISE HEADING AND

LINEUP CHANGES

QUALITATIVE EVALUATION OF VARIOUS MISSION MANEUVERS

INITIATING A ROLL BY RETARDING ONE OUTBOARD ENGINE

INDICATES A 30 OR 90 DEG CLOCKWISE OR COUNTER
CLOCKWISE CONTROL INPUT AS INDICATED

(SEE TEXT FOR DETAILED DESCRIPTIONS)

TABLE III
S8IMULATOR CONDITIONS
THE BASIC SIMULATOR WITH NO SOFTWARE MODIFICATIONS

MODIFIED VALUE OF THE TOTAL AILERON ROLLING
MOMENT CORFFICIENT

AN INCREASED AILERON DEFLECTION OF 4 OR B DEG
ON BOTH AILERONS, 1IN BOTH UP AND DOWN DIRECTIONS

UTILIZING THE SPLIT-FLAP CONDITION

(SEE TEXT FOR DETAILED DESCRIPTIONS)




for all runs, which accounts for the lack of data in some
areas.

Throughout the quantitative data acquisition phase,
the pilots qualitatively evaluated the aircraft for
controllability and workload. Although Handling Quality
Ratings (HQR's) were not assigned, the various modified
configurations were qualitatively compared to determine the
optimum condition. In addition to the "canned" maneuvers, the
pilots performed approaches, as well as precise heading and
lineup changes, to determine the potential mission degradation
that would occur during typical mission maneuvers.

2. Asymmetric Thrust

Another method of test that was bri fly attempted was
the utilization of asymmetric thrust to initiate a roll. Each
of the four turboprop engine produces 4600 shaft horsepower
(maximum rated). Any thrust differential that might occur
between the two outboard engines would provide an unbalanced
directional force due to the 1large 1lateral separation,
resulting in a lateral force due to the dihedral effect.
Additionally, since the propeller effect or the airflow over
the wing produces a considerable amount of lift, a large lift
differential will occur between the two wings, producing a
larger rolling moment.

Several attempts were made to take advantage of this
asymmetric thrust. Rolls were initiated from a straight and

level conditinn by advancing one outboard throttle and
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returding the other. This method of roll initiation did, in
fact, create a significant roll rate. However, there were two
problems experienced during this maneuver. First, the pilot
workload was unacceptable. A reduction in workloaa would be
cea..zed if the copilot operated the throttles while the pilot
controlled the aircraft. However, an unacceptable amount of
crew coordination would be required and the throttle inputs
and subsequent rolling moments would be delayed. A second
problem existed in the large amount of altitude lost while
performing this maneuver. Since the majority of the P-3
mission is spent low, over the water, altitude loss can be
very dangerous. The difficulties associated with the use of
asymmetric thrust for enhanced roll acceleration precludes

this option from consideration.

C. BASELINIZ CONFIGURATION

A complete series of tests was conducted prior to
modifying the simulator software in order to obtain baseline
data. This data was used to evaluate the changes to the
lateral response due to each of the software changes. Also,
this ba:r=line data was used for comparison with results from
previcus OFT tests, Ref 8. The results are tabulated in Table
I, and graphically displayed in Figure 5. As can be seen in
the figure, the baseline simulator exhibited roll rates of
approximately 20°/sec. throughout the airspeed range tested.

This data agrees well with Ref. 8. The differences seen
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between the 1left and right directions are due to the
slipstream effects of the airflow over the wing caused by the
turning propellers as well as the torque effects.

The 30° CCW and 90° CW maneuvers were duplicated from Ref.
8. For a 30° CCW input, the steady state roll rate was
7.7°/sec for the airplane and 11°‘/sec for OFT 2, compared to
an average of 8.7°/sec for these tests. For a 90° CW input,
the steady state roll rate was 21.6°/sec for the airplane and
18*/sec for OFT 2, compared to an average of 24.5°/sec for
these tests. The results are not exact, but are acceptable
for the purpose of this evaluation, since the major concern
is the amount ¢f improvement obtainable, and not the precise

values of the results.

D. LATERAL CONTROL FORCES

Throughout the evaluation, the lateral control forces were
excessive. Forces in excess of 50 1lbs. (often as high as 70
l1bs.) were required to establish full lateral control inputs.
These high forces were noted for turns in either direction,
over the full airspeed range tested and for all of the
modifications to the simulator. These control forces resulted
in slow inputs and eventual pilot fatigue. Slow inputs result
in inadequate roil acceleration. Although the steady state

roll rate will not be affected by this low roll acceleration,

the initial aircraft response will be sluggish. A reduction




in control forces would permit quicker inputs, resulting in
increased roll acceleration for more aggressive maneuvering.

The control forces existing on the OFT's could not be
changed. Therefore, the actual amount of reduction in control
forces needed for the desired effect is not evident. However,
it is obvious that any decrease in the lateral control forces
would result in an improvement to the current roll response
characteristics of the P-3. However, it should be noted that
the lateral control forces exhibited by the flight simulator

are somewhat greater than those of the actual P-3C aircraft.

E. MECHANICAL CHARACTERISBTICS

The current lateral flight control system of the P-3
consists of a group of cables operating between the control
wheel and an aileron booster unit. The movement is then
transmitted to the ailerons via push-pull rods connecting to
the aileron bellcrank assemblies. An inherent drawback with
this type of system is a delay in transmitting control
movement to the control surfaces, as well as the slow movement
of the control surfaces. Therefore, it takes a relatively
long time for the aileron to wove through the full deflection
range. Although step inputs were utilized to initiate all
roll maneuvers, the inherent delay in transmitting the controi
movements to the ailerons and slow reaction time of the

surfaces resulted in sluggish aircraft response. The precise

time between control input and completion of control movement




was not documented, but results indicated that almost five
seconds was required. This time delay is not conducive to a
"snappy" roll.

Altering the mechanical control system of the aircraft in
such a way that would reduce the transmission delay and
increase the rate of movement of the aileron would contribute
to an increased lateral control response. This would allow
for quicker aircraft response to pilot input. As with the
control forces, there was no way to evaluate this type of
change on the flight simulator. Therefore, the extent of
control system modifications required to create the desired
response is not known. However, advances in technology since
the initial i1nstallation of this system into the P-3 make it
a viable option. It is recommended that further evaluation
be conducted to determine the possible results of such a

modification.

F. EFFECTS OF CHANGING THE AILERON MOMENT COEFFICIENT
1. Description of Test
The first software modification to the simulator,
involved a systematic increase in the total rolling moment
coefficient (C)). Evaluations of the different C 's were
conducted utilizing the simulator. The changes to the
software simulated a number of possible modifications to the

actual airframe which would result in a larger contribution

of the lateral contrcl surfaces to the rolling moment of the




aircraft. Such changes could include a larger aileron or the
addition of other control surfaces such as spoilers.

Table V shows the section of software that was changed
during this portion of testing. The constant 'K' in this
software is a coefficient representing the magnitude of the
C, due to flap position. For most of the evaluation, the
flaps were retracted, so this value of 'K' did not change and
could be easily modified to vary C,. This value of 'K' was
incrementally increased from the original value to simulate
the higher rolling moment coefficient. (Doubkling the value
of 'K' has the effect of doubling C,.)

TABLE V

SIMULATOR SOFTWARE FOR MODIFYING
THE ROLLING MOMENT COEFFICIENT

}h‘-&&kf.ki'.Q~‘GL&S‘.’-U-L5&&&&&&&‘&&&6&&“&‘&&5&&&55&&6‘&&LM.L&&G&&&&&S&

+MMEQ FCLDA = (FCLDAR - FCLDAL)®K = 0.CO04'FDATT 11002072
LMREQ FLAPS=0-10,K=,91FLAPSEif-40,K=,8 100207A
FORRRLEL LB Rt o RAALRLNLE ALERLELELRBEALREEAEALRLLERGERREREERRELEGE
JMMEND
MOV FCLDAR,RO 1=0) *03 CUL DELTA AIL, RIGHT
5u8 FCLDAL,RO 1-03 =03 {FCLDAR = FCLDAL
Mwov Fooy,nr2 1400 1.V, FOR FLAPS 002074
CcHP $0.12%800,R2 ! FuAPS<YO 1002074
BHI 804 ' BR IF FLAPS>I0 1002014
MOV 10,.125600,R2 ! LOWER LIMIT 1002070
80341 (@14 L 10,295800,R2 H FLAPS>18 1002074
RPL S 904 ! BR IFf FLAPS<iS 1002070
Hov 00,2%800,R2 ' UPPER LIMIT 10020 TA
904 oY ) 61,0801,R4 1403 1ou2074A
MUL - 80,080800,R2 1400400408 .4,.2 10U20718
! SUB ' R2,Rd 1401 R4=Kk=,9(0,10) OR s,0(JR,40/00207A
- MUL 3,4 Re,PO 4 1401=0)-04 MO=K*(CLDAR-CLDAL) s002C7A
ASHC ...l #2,RO o 1-01 03 1002074
MOY ! FDATT,R2 1408 +0S DELTA AlIL, TRIM TAB
MUL © 0 040,00048=09,R2 1=09408-0) ~0,0004% FDATT 1OUO0SIA
T sue ¢ o P2,R0 B 103 <0)
. UMDY -0 RO, FCLDA 1=03 =03 S8TORE FCLOA _ o
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For each value of 'K', the described series of
maneuvers was conducted to determine the resulting roll rate
and acceleration, while the effect on the flying qualities of
the airplane was gqualitatively evaluated.

2. Results

A tabulated summary of the results of this test is
shown in Appendix A, Table III. These times are graphically
displayed in Figures 6 and 7, for the left and right
directions respectively. The baseline condition is included
for comparison.

As expected, an increase in the value of 'K' dgenerally
resulted in enhanced roll response. The pilots found that a
value of 'K' = 1,99 provided an uncontrollable flight regime.
The aircraft was too responsive, resulting in constant over-
correction by the pilots and hence the inability to maintain
a wings level flight condition. At this value of 'K', the
time to roll the initial 10° and the steady state roll rate
do not appear to be consistent with the trends established by
the other values of 'K'. However, this condition is not
considered to be as quantitatively accurate as the others
because the pilots anticipated overshooting 70° angle of bank
(resulting in a crash condition on the simulator). Therefcre,
the control inputs were removed prematurely, decreasing the
roll response.

Qualitatively, as the value of 'K' was increased from

the original value, the aircraft became more sensitive in the
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lateral axis. A value of 'K' = 1.75 provided a controllable
aircraft, without an unreascnable increase in workload, and
exhibited excellent lateral flying qualities. The steady
state roll rate was found to be about 35°/sec. (dependent on
airspeed). The roll rate was approximately 75% higher than
the baseline zondition for all airspeeds tested. Although
there was a tendency to slightly over control the aircraft at
60° angle of bank, an approach to landing was safely performed
with no lineup problens. In general, the pilots quickly
adapted to the increased roll response. As described by cne
pilot: "It's like driving a car with power steering for the
first time - you tend tc over control it initially, but you
get used to it quickly."

A value of 'K' = 1.75 represents an increase in the
total aileron rolling moment coefficient of 194% for the
normal flap (0°) condition and an increase of 219% in the
approach flap (18°) condition. Therefore, doubling the
current aileron rolling moment coefficient of the P-3 appears

to be an ideal goal for changes to the P-3 lateral axis.

G. EFFECTS OF CHANGING THE TOTAL AILERON DEFLECTION
1. Description of Test
The second software modification was an increase in
the total aileron deflection of the simulator. The software

was modified in such a way as to provide increased total

deflection on the left and right ailerons, as well as larger




aileron deflections for a given control input. The additional
deflections were applied in both the positive and negative
directions. Additional deflections of both 4° and 8°' were
investigated. The current limits of the aileron travel are

compared to the modified values in Table VI.

TABLE VI ~
LIMITS OF AILERON DEFLECTION
RIGHT LEFT
UPPER LOWER AVERAGE UPPER LOWER
(DEG)  (DEG) (DEG) (DEG)  (DEG)

CURRENT 16.00 20.00 +18.69 15.50 23.25
4° ADDITIONAL 20.00 24.00 122.69 19.50 27.25
8° ADDITIONAL 24.00 28.00 $26.69 23.50 31.25

AVERAGE - USED IN THE AIRFOIL CODE EVALUATION, SINCE THE
EFFECT OF THE TURNING PROPELLER IS ROT
CONSIDERED.

The control laws of the OFT did not account for the
possibility of flow separation with the increased deflection.
The tests were conducted with the assumption that a stall
condition did not occur. However, the stall characteristics
of the airfoil were accounted for by evaluating the same
deflections with a 2-D airfoil code that will be discussed
later in this report.

The described series of maneuvers was conducted to
determine the resulting roll rate and acceleration, while the

effect on the flying qualities of the airplane was

qualitatively evaluated.




2. Results

A tabulated summary of the results of this test is
shown in Table VII. The average values are included because
the effect of the turning propellers were not considered
during the later evaluation with an airfoil code. These
values will be used for comparison with those results. A
graphical representation of these results compared to the
baseline air:craft is shown in Figures 8 and 9 for left and
right turns respectively. As can be seen, the additicnal
deflection does, indeed, increase the steady state roll rate
of the P-3 by as much as 50%, without unreasonably increasing
the workload.

Restrictions within the OFT hardware, 1limited the
total increase in aileron deflection to 16° on each side.
This yielded an increased deflection of a positive 8° on one
side and a negative 8° on the opposite side for a full control
input. This maximum increase in deflection is not considered
to be the limiting casa as far as lateral response or pilot

worklcad is concerned. However, the effects of the local flow

separation must still be considered.
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H. EPFECTS8 OF USING FLAPS FOR ROLL ASSIST
1. Description of Test

One of the emergency procedures (EP) incorporated in
the P-3C simulator is a split-flap condition. This split-flap
condition occurs when one flap extends or retracts farther
than the other. This EP was used to evaluate the contribution
to roll response induced by utilizing the flaps as a lateral
control surface.

Actual modifications to the aircraft would consist of
active flaps instead of split-flaps. An active flap is one
which responds to lateral control inputs, much like an aileron
under certain conditions where the flap position is a function
of control deflection. However, 1limitations within the
software prohibited simulation of an actual active flap
condition. The flaps were set asymmetrically about the
maneuver flap position (the 10°' position). The left flap was
set at 6° and the right flap at 14°, inducing a left rolling
moment.

The maneuver flap position was selected as the center
position due to considerations of actually incorporating
active flaps on the aircraft. It would not be beneficial to
utilize active flaps during all phases of the mission. As
part of the active flap system, it would be necessary to
"gsense" the need for active flaps. Sensors could be installed

to evaluate the lateral input and activate the active flaps

at a predetermined value of input rate or force. However,




this could result in excessive complexity. A simpler method
seems to be utilization of the maneuver flap position to
demand the active flap condition. This flap position is
rarely used during the mission since it creates only a 2 to
3 knot reduction in stall speed and increases fuel usage due
to the higher power settings required. When the mission
dictates the possible need for increased roll response, the
pilot could select this maneuver flap position. The slight
loss in performance due to the increased drag could be
justified by the increase in roll rate when defensive
maneuvering is anticipated.

Only left turns were evaluated for this condition due
to the rolling moment induced by the split flap. Each test
maneuver was initiated from a steady, level 60° angle of bank
right turn. Qualitative evaluation was limited since the
flaps were stationary throughout the maneuver. While the
split-flaps reduced the workload during left turns, right
turns were very difficult due to the induced left rolling
moment. The extremely high workload required to stop the left
turn or return to a wings level «condition was not
representative of an actual aircraft incorporating active
flaps.

2. Results

A summary of the results of this test is shown in

Table VIII and graphically displayed in Figure 10. As

expected, the use of flaps increased the roll response of the

38




aircraft. The time to roll 60° was decreased by a full
second, from 3.75 sec. to 2.75 sec. The time to roll the
initial 10° was reduced from 1.5 sec. to just over 1 sec. and
the steady state roll rate was increased by about 50% (30°/sec
vice 20°/sec). The use of active flaps instead of stationary
flaps would provide this enhanced lateral response, without
the added workload experienced with the stationary split-flap.
However, extrapolation from the split flap to active flap
conditions must be handled with caution. Care should be used
when making any conclusions, since very little data was
obtained during this portion of the tests due to excessive

pilot workload in the split flap condition.

TABLE VIII
RESULTS OF SPLIT FLAP TESTING
STOP WATCH TIME
STEADY HES
RUN PRESSURE MANEUVER (8EC)
STATE
NO. KCAS ALTITUDE DESCRIPTION STEADY INITIAL
ROLL RATE
(FT) 60 DEG 10 DEG
(DEG/SEC)
133 190 500 0 TO 60 LT 2.51
23.90
134 190 500 0 TO 60 LT 2.75
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IV. AIRFOIL CODE

Having established a "target" roll response, it was
necessary tc determine to what extent the current wing of the
P-3 would have to be modified to reach this goal. An airfoil
computer code was utilized to determine the changes necessary
to produce an aileron rolling moment equivalent to twice the
current value. If these changes were found to he too drastic,
the computer code could also be utilized to determine the
rolling moment which could be generated by reasonable
alterations. The code could also predict the effect of

additional aileron deflection on the airflow over the wing.

A. DESCRIPTION OF AIRFOIL CODE

To evaluate these various modifications, a 2-D airfoil
computer code was utilized. This code, called SEARCHSE, was
developed as part of a Masters' Thesis at Texas A & M and is
described in detail in Refs. 11 and 12. This code was chosen
for this evaluation for two reasons. First, the code is
designed to evaluate multi-element airfoils and the resulting
flow over a deflected surface. Secondly, the code will
predict flow separation.

Several inputs are required to run this program, including
the geometry of the airfoil, angle of attack, Mach No.,
stagnation pressure and temperature, and kinematic viescosity.

The surface pressure distribution is calculated, from which
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the 1ift, drag and pitching moment coefficients are derived.
For this evaluation, the lift coefficient was the primary

concern.

B. MODIFICATIONS AND VERIFICATION

Modifications to the program were required to tailor it
to the specific needs of this evaluation and provide
compatibility with the computer system at USNPGS. The major
modification consisted of deleting all references to plotting
within the program because the plot sub-program which is
called for in SEARCHSE was not available on the USNPGS
computer system. The other modifications were minor in nature
and were designed to correct several format type errors
discovered when operatiag on this computer systemn.

Once these modifications were complete, it was necessary
to verify the accuracy of results obtained from the modified
SEARCHSE progranm. The non-dimensional coordinates for the
NACA 0012 airfoil were input to the program and the results
were compared to experimental results. Reference 13 shows
theoretical results for the NACA 0012 airfoil for a Reynolds
No. of 9 X 10°. The airspr ° and temperatures that were
chosen for input to the pr . srovided a Reynolds No. of
8.96 X 10°. Angles of attack were varied until separation was
predicted in both the positive and negative directions.
Results showed very close agreement with theory for all angles

of attack evaluated. This close agreement verified the
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accuracy and justified use of the program for evaluating
airfoil modifications.
C. METHOD OF EVALUATION

Once the accuracy of the program was confirmed, several
airfoil sections were evaluated with a variety of trailing
edge deflections and sizes. All inputs to the program were
for sea-level standard day conditions. These section results
were then mathematically combined to determine the overall
wing effect.

A fortran program, WINGIT, was created that could modify
the basic NACA 0012 airfoil as required for this evaluation.
The program could provide a change in the thickness of any
specific airfoil, an aileron deflection, and an altered
aileron chord size. This prciram is included as Appendix B.
This program was not designed to optimize the airfoil geometry
with these changes incorporated. The results are, therefore,
not exact, but for the purposes of this evaluation, the
geometry generated by the program is satisfactory. Before
making any actual changes to the aileron shape, it would be
important to determine the optimal airfoil geometry to prevent
flow separation.

Initially, the NACA 0012 airfoil coordinates were input
to WINGIT to produce the basic NACA 0013 and NACA 0014
airfoils. (All three of these airfoils are from the same
family of airfoils and differ only by relative thickness.)

These airfoils were then run through SEARCHSE to determine
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the effect of thickness on the coefficient of lift C . The
effect was minimal. Since the airfoil sections of the P-3
wing vary linearly from the NACA 0012 at the wingtip, to the
NACA 0014 at the wing root, it was decided to use the NACA
0013 for all evaluations to approximate average results.

The NACA 0013 airfoil coordinates were then run through
the WINGIT program several times to create a variety of
aileron size and deflection combinations. Five different
aileron sizes were evaluated. These sizes were increased in
25% 1increments, from a relative aileron chord of 1.00
(original size) to 2.00 (double the original aileron).

The angle of attack was varied from =-6° to +6°. Higher
angles of attack were not investigated since the nornal cruise
angle of attack of the P-3 is relatively low.

The results of this portion of the evaluation are
discussed in the following sections. Although only typical
results are shown and discussed, Appendix C contains a
complete set of data. All trends shown in the typical results

are consistent for all conditions evaluated.

D. RESULTS
1. Effects of varying the Aileron 8ize
As stated earlier, there is no room for spanwise
growth of the lateral control surfaces along the wing. For

this reason, only the effect of chordwise aileron increases

was evaluated. Typical results of the effect of varying the




aileron chord size are graphically illustrated in Figure 11A
for an angle of attack of 0°, and in Figure 11B for an aileron
deflection of 20°. As can be seen in the two graphs,
increasing the aileron size results in a larger ¢ for all
angles of attack and aileron deflections as expected. For a
25% increase in aileron size, the value of C, was increased by
0.1. Doubling the size of the aileron resulted in an increase
of 0.3 for the same deflection. An increase of 100% produces
an airfoil which is 43% of the airfoil section. This may be
excessive for the average airfoil, based on the geometry cf
todays' general transport type aircraft. A more reasonable
size may be to increase the aileron chord by 50%, which
provides an aileron that is only 36% of the total chord. The
value of C, for this condition is increased by 0.2. However,
this ¢, is acting over a larger area, to yield a much better
result. To determine the actual results, the following
equation for l1lift was used:
L = 1/2 C, (density) V¢ S

As far as the rolling moment is concerned, the lift
produced by that part of the wing not covered by the aileron
is cancelled between the 1ef£ and right side. Therefore, only
the lift produced by the aileron sections is considered in the
calculations. For simplicity, and due to inherent problems
in SEARCHSE (which will be discussed later), calculations were
performed for a zero angle of attack airfoil with 20° of

aileron deflection in both the up and down directions.
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Results are shown in Table IX. As seen in this table,
increasing the aileron size by 50% alone (no additional
deflection or other aircraft modifications), yields an
increase in rolling moment of almost 29%. If combined with

other modifications, this would be even higher.

TABLE 11X -
EFFECT OF INCREASED AILERON SIZE OW LIFT (1)
RELATIVE INCREASE AVERAGE
AILERON c. AREA LIFT FROM 1.00 INCREASE
S12¢ Ft 2 b X X
1.00 1.4839 166.56 32965.74
1.00 -1.4095 166.56 -31312.90
1.2% 1.5834 178.01 I7594.34 14.04X 14.68%
1.25 -1.5209 178.01 -36110.42 15.32%
1.50 1.6629 189.466 $2021,46 27.47TX 28.62X
1.50 -1.6081 189.46 -40636.66 29.78%
1.7 1.727% 200.91 46292.12 40.42% 42.00%
1.7% -1.6778 200.91 +64960.30 42.58%
2.00 1.7807 212.36 50437.20 53.00% $4.99%
2.00 -1.7355 212.3% +49156.93 56.99%
(1) ALL DEFLECTIONS ARE £20°
ANGLE OF ATTACK = 0°

2. Effect of Varying the Ailercn Deflection
Typical recsults for the effect of increasing the
aileron defleztion are illustrated in Figure 12A for an angle
of attack of 0° and 12B for a relative aileron size of 1.50,.
An increase in aileron deflection increases the value of C
by as much as 2 (for a 30° aileron deflection in both the
positive and regative directions). The deflection angle which

caused predicted flow separation varied depending on aileron
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size and angle of attack. Table X is a summary of these
results. (As seen in Table X not all conditions were run to
the point of predicted flow separat on.) Also apparent in
this table is a problem inherent to the SEARCHSE program. A
symmetric airfoil at 0° angle of attack should see the same
magnitude of C  for equal aileron deflections in opposite
directions. Additionally, an angle of attack of 6° should
produce equal kut opposite values of C when compared to =-6°.
The results from the program do not confirm this. This
problem was not identified during the verification phase,
since no theoretical data was found for ailerons with
deflected surfaces. For the purposes of this evaluation,
averages were taken for these contradicting results (up to 4%
differences when comparing the improvements). For the tests
at low angle of attack (0° and #*2°*) it is apparent that
deflections of up to *25° do not cause predicted flow
separation. This represents an average increase in the
aileron deflection of more tnan 6° when compared to the
average values shown in Table VI. From Figure 12 this results
in an increase in C, from about 1.6 to slightly over 2.
3. Effects of Varying the Angle of Attack

Typical results of the effect of varying the angle of
attack are graphically illustrated in Figure 13. As expected,
an increase in the angle of attack increased the value of C .
The increase is constant regardless of the aileron size for

deflections up to 25°. Therefore, the cruise angle of attack
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TABLE X '
LIMITING AILERON DEFLECTION ANGLES

TEST RELATIVE ANGLE OrF AILERON COLFFICIENT CONDITION .
CASE #)'SRON SIZE ATTACK DEFLECTION OF LIFT (1)
A 0 0 K} 2.6186 L
A 130 0 -32 «2.1085 L )
B .00 2 s 2.7201 L
B 1.00 2 =35 -2.2140 N
c 1.00 -2 40 2.6280 N
c 1.00 -2 29 -2.1920 L
D 1.00 6 26 2.521 L
D 1,00 [ 1 -40 -2.1638 N
A 1.00 -6 46 2.7272 L
) A 1.00 -6 -20 -2.1091 L
F 1.25 0 3¢ 2.7166 L
F 1.25 0 -31 -2.2M17 L
G 1.25 2 33 2.7325 L
G 1.25 2 -37 -2.4650 L
H 1.25 -2 39 2.7087 L
R 1.25 -2 -26 -2.1495 L
1 1.25 3 22 2.3874 L
i 1.25 6 -40 -2.2739 N
J 1.25 -6 40 2.3868 N
J 1.25 -6 -17 -2.0149 L
K 1.50 0 34 2.7227 L
K 1.50 0 29 «2.2631 L
L 1.50 2 20 2.5702 L
L 1,50 2 -33 2.3450 L
] 1.50 -2 1 3.0097 L
L 1.50 -2 -24 -2.1112 L
N 1,50 [ 1?7 2.0905 L
N 1.50 6 -44 -2.6939 L
o] 1.50 -6 46 2.9364 L
(o] 1.50 -6 -15 -1.9393 L
P 1.75 0 31 2.5980 L
p 1.7% 0 -26 «2,0632 N
Q 1.75 2 25 2.3458 L
Q 1.75 2 =31 -2,3015% L
R 1.78 -2 Kk 2.5371 L
R 1.75 -2 -20 -1.8907 .}
8 1.75 6 10 1.5679 N
3 1.75 [ =20 -1.0178 ]
T 1.78 -6 20 0.4178 N
T 1.75 i -10 -1,5276 N
0 2.00 0 k)1 2.6817 L
0 2.00 0 -25 -2,132) L
\' 2.00 2 10 1.1369 N
L] 2.00 -2 10 0.6778 N
X 2.00 [ 17 2.1917 L
Y 2.00 -6 10 0.2137 N

(1) CONDITJON: L - LIMITING DEFLECTION
N - NOIM LIMITING DEFLECTION
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need not be a concern when implementing any changes to the
aileron except for deflection angles in excess of 25°. Figure
13B shows the effect of increasing the angle of attack alone
(without aileron deflection).
4. Combined Effect of Increased Aileron 8ize and

Deflection

Combining the results of an increase in both aileron
size and deflection would result in a larger rolling moment
than has been discussed thus far for each jindividual
improvement. As discussed previously, a total aileron
deflection of $25° is a reasonable modification. Table XI
shows the resulting lift for *25° deflection in combination
with an increased aileron size. These results are graphically
displayed in Figure 14. As can be seen, combining the
increased deflection with an increased aileron chord creates
a much larger rolling moment. For a 50% increase in aileron
chord and 5 additional degrees of deflection there is almost

a 60% increase. This is not quite the desired target but it

does represent a significant improvement in roll response.




TASLE 11
. EFFECT OF INCREASED AJLERON SIZE AND DEFLECTION QM LIFT (1)

RELATIVE  AILEROW

AJLERON DEFLECTION L AREA (§141 JNCREASE FROM BASELINE
$12¢ Deg fFt-2 1) (AVERAGE )
1.00 20 1.4839 166.%6 32963.7¢ = BASELINE -
1.00 20 <1.409% 166.%6 -31312.%0 < BASELINE -
1.00 25 1.829 166.%6 40641.23 23.28x 23.5%
1.00 3] <1.74645 166.56 -38735.13 3.7
1.2% 3] 1.9483 178.01 46258.09 40.32% 40.92%
1.25 25 <1.8665 178.01 -64315,93 41,93%
1.50 r3] 2.0448 189.446 $1672.07 96.74% 58.26%
1.%0 2 -1.9798 189.46 -50029.%2 $9.77%
1.7% 25 2.123¢ 200.91 $6914.92 T2.65% 76.61%X
1.7 78 -2.0433 200,91 -$5290.61 76.57%
2.00 25 2.197% 212.% 62202.7% 88.81% 90. 84X
2.00 25 -2.1323 £12.3 -60396.04 92.882
(1) ANGLE OF ATTACK = 0°
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V. CONCLUSIONS

Tests were conducted on the P-3C OFT's at NAS Moffett
Field to determine a realistic "target" for improvements to
the lateral response characteristics of the P-3C aircraft.
Doubling the current rolling moment coefficient of the
aircraft was determined to be the goal. Several ways to
achieve this goal have been discussed. Among these are:

(1) Reduce the control forces.

(2) Reduce the inherent delay of transmitting the control
inputs to the control surfaces.

(3) Increase the total aileron deflection.

(4) Increase the aileron chord.

(5) Utilize the flaps for roll assist.

One method that was evaluated, but is not appropriate for
consideration, is the utilization of asymmetric thrust for
roll initiation.

A 2-D airfoil computer code was run to determine to what
extent the current airfoil section of the P-3C wing would have
to be altered to obtain the goal of doubling the value of C,.
It was found that by increasing the aileron deflection from
an average of #20° to *25° and increasing the aileron chord
by 50%, a 58% increase in C, could be realized. Although this
does not reach the goal of a 100% increase, it does provide

for a significant increase in lateral control response. An
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increase in aileron size and deflection used in conjunction
with some of the other suggested modifications would certainly

approach the desired goal.
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VI. RECOMMENDATIONS

Prior to incorporating any of the suggested modifications,

it is recommended that an investigation of the structural

impact on the airframe should be conducted. Additionally,

further research should be conducted to determine the

following:

(1)

(2)

(3)
(4)
(3)

The feasibility of reducing the control forces.

ways of reducing the delays inherent in transmitting
the control inputs to the control surfaces.

The effect of adding spoilers and stall fences.

The effect of using an active flap system.

The optimal airfoil geometry for an increased aileron

chord.
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111
112
113
114
115
116
117

118
119

120

121
122
123
124

125
126
127
128
129
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TABLE I

TESTS AND TEST CONDITIONS (PAGE 1 OF 4)

PRESSURE

AIRSPEED ALTITUDE

(KCAS)

196
195
2C2
201
199
200
199
2930
244
245
243
238
202
210
204
268
193

216
211
200
200
182

196
187
193
191

204
218
214
196
216

223
218
196
192
200
200
200
200

(FT)

517
524 .
545
553
583
516
5.2
432
5C0
500
500
500
500
500
500
500
500

500
500
500
500
402

449
5i8
543
558

472
474
617
520
523

414
355
484
701
500
500
500
500

MANEUVER
DESCRIPTION

TO 60 RT
TO 60 RT
TO 60 RT
TO 60 RT
TO 60 .RT
TO 6C LT
TO 60 LT

0 TO 6C LT

60 RT TO 60 LT

60 RT TO 60 LT

60 RT TO 60 LT

60 RT TO 60 LT

60 LT TO 60 RT

0 TO 60 RT

60 LT TO 60 RT

0 TO 60 LT

60 RT TO 60 LT
HEADING CHANGES

0 TO 60 RT

0 TO 60 LT

60 RT TO 60 LT

60 LT TO 60 RT

60 LT TO 60 RT
KEADING CHANGES

0 TO 60 LT

0 TO 60 RT

60 RT TO 60 LT

60 LT TO 60 RT
APPROACH

0 TO 60 RT

0 TO 60 LT

60 RT TO 60 LT

60 RT TO 60 LT

60 LT TO 60 RT

TAKE OFF AND LANDING
0 TO 60 RT

0 TO 60 LT

60 RT TO 60 LT

60 LT TO 60 RT

0 TO 60 RT

0 TO 60 LT

0 TO 60 RT

0 TO 60 LT

OO0 00000

61

SI
co

BA
BA
BA
BA
BA
BA
BA

MULATOR
NDITION

SELINE
SELINE
SELINE
SELINE
SELINE
SELINE -
SELINE

BASELINE

BA
BA
BA
BA
BA

oo B oo MR O X R RO IX
R T I N R I I I

K=
K=
K=
K=
K=

o e B S B

4
BA
BA

SELINE
SELINE
SELINE
SELINE
SELINE

=,99

.99

=.99

.98

.99

.99

.99

.99

.99

.98

.99

.S

.5

.5

.5

.5

.75

1.75

1.75

1.75

1.75

1.75

DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
SELINE

SELINE

[ W Y

—



RUN
NC.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
S1
52
83
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
10
n
72
73
74
75
76
7
78

PAGE

TABLE I

TESTS AND TEST CONDITIONS (PAGE 2 Or 4)

PRESSURE

NO. AIRSPEED ALTITUDE

201
202
203
204
205
206
207

208
209
210
211
212
213
214
215

{KCAS)

200
200
200
200
275
275
275
273
275
275
275
275
350
350
350
350
350
350
350
200
200
200
194
185
185
188
202
205
204
275
275
275
275
275
275
314
281
281
291
a8
301
309
294

(FT)

500
500
500
500
500
500
530
500
500
500
500
500
500
500
500
500
500
500
500
590
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

MANEUVER

DESCRIPTION

60 RT TO 60

60 LT TO 60
90 DEG CW

30 DEG CCW
0 TO €0 RT
0 TO 60 LT
0 TO 60 LT
0 TO 60 RT
0 TC 60 RT
0 TO 60 LT
60 LT TO 60
60 RT TO 60
0 TO 60 RT
0 TO 60 RT
0 TO 60 LT
0 TO 60 LT
60 RT TO 60
60 LT TO 60
60 LT TO 60
0 TO 60 RT
0 TO 60 RT
0 TO 60 RT

60 RT TO 60

60 RT TC 60
60 RT TO 60
60 LT TO 60
60 LT TO 60
60 LT TO 60
60 LT TO 60
0 TO 60 RT
TO 60 RT
TO 60 RT
TO 60 LT
TO 60 LT
0 TO 60 LT
60 RT TO 60
60 RT TO 60
60 RT TO 60
60 RT TO 60
60 LT TO 60
60 LT TO 60
60 LT TO 60
60 LT TO 60

62

LT
RT

RT
LT

LT
RT
RT

LT
LT
LT
RT
RT
RT
RT

T
LT
LT
LT
RT
RT
RT
RT

SIMULATOR
CONDITION

BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE

BASELINE

BASELINE
K=1.75
K=1.75
K=1,75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.75
K=1.7%
K=1,75
K=1.75
K=1.78
K=1.75
K=1,75
Ke=1,7%
K=1,7%
K=1,75
Kel,78



RUN
NO.

79
80
81
82
83
84
83
8¢
g7
88
89

n
v

91
92
93
34
95
96
97
98
99

100

101

102

103

104

105

106

106

107

108

109

110

11

112

113

114

115

116

117

118

119

120

PAGE
NO.

216
217
218

219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234

235
236
237
238
239

240
241

TABLE I

TESTS AND TEST CONDITIONS (PAGE 3 OF 4)

PRESSURE
AIRSPEED ALTITUDE
(KCAS) (FT)
282 500
257 500
263 500
170 10000
178 10000
177 1000
175 10000
178 10600
181 10000
173 10089
184 10031
350 500
350 500
350 500
350 500
348 500
345 500
360 50
361 500
353 500
342 500
361 500
369 500
500
50C
171 10000
172 10000
174 10000
168 10000
1711 10000
200 500
200 500
200 500
200 500
200 500
200 500
200 500
200 500
200 500
200 500
247 500
190 500

MANEUVER

DESCRIPTION

60 LT TO 60
60 LT TO &°
60 LT TO 60

APPROACK AND LANDING

30 DEG CCW
30 DEG CCW
30 DEG CCW
90 DEG CW

90 DEG CW

90 DEG CW

ASYMMETRIC
ASYMMETRIC
0 TO 60 RT
0 TO 60 RT
0 TO 60 LT
0 TO 60 LT
60 LT TO 60
60 LT TO 60
60 RT TO 60
60 RT TO 60
60 LT TO 60
60 RT TO 60

' 60 RT TO 60

60 RT TO 60
ASYMETRIC T
ASYMETRIC T
80 DEG CW
90 DEG CW
90 DEG CW
30 DEG CCW
30 DEG CCW
TO 60 RT
TO 60 RT
TO 60 RT
TO 60 RT
TO 60 LT
TO 60 LT
TO 60 LT
TO 60 LT
TO0 €0 LT
TO 60 RT
60 RT TO 60
60 RT TO 60

0000000 O0O0Oo

63

RT
RT
RT

THRUST
THRUST

RT
RT
LT
LT
RT
LT
LT
LT
HRUST
HRUST

LT
LT

SIMULATOR
CONDITION

K=1.75

K=1.75

K=1.75

K=1.75

BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE
BASELINE

K=1.75

K=1.75

K=1.75

K=1.75

K=1.75

K=1.75

K=1.75

K=1.75

K=1.75

K=1.75

K=1.,75

K=1.75

K=1.75

K=1.75

K=1.7%

K=1,75

K=1.75

K=1.7%

K=1.7%

DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION
DEG DEFLECTION

oo

oo omoaoao o o o



RUN
NO.

PAGE
NO.,

242
243
244
245
246
247
248
249
250
281
252
253

TABLE 1

TESTS AND TEST CONDITIONS (PAGE 4 OF 4)

AIRSPEED
(KCAS)

200
204
201
203
208
284
299
287
283
308
298
279
190
190
190
18¢C
180
200
200
200

PRESSURE
ALTITUDE
(FT)

500
500
500 .
500
500
50C
500
500
500
S0¢
50C
500
50C
500
500
500
500
500
500
500

60
€0
60
60
60
60
60
€0
60
60
60
60

MANEUVER
DESCRIPTION

RT TO
LT TO
LT TO
LT TO
LT TO
RT TO
RT TO
RT TO
LT TO
LT TO
LT TO
LT TO

60
60
60
60
60
60
60
6C
60
60
60
60

0 TO 60 LT
0 TO 6C LT
0 TO 60 LT
60 RT TO €0
60 RT TO 60
0 TO 60 LT
0 TO 60 LT
0« TO 60 LT

64

LT
RT
RT
RT
RT
LT
LT
LT
RT
RT
RT

LT
LT

SIMULATOR
CONDITION

JEG
JEG
DEG
DEG
DEG
DEG
JEG
DEG
DEG
JEG
JEG
JEG
SPLIT
SPLIT
SPLIT
SPLIT
SPLIT

oo o MmO oo oo ®®

K=1.75
K=1.75
K=1.75

DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
DEFLECTION
FLAP

FLAP

FLAP

FLAP

FLAP
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APPENDIX B

PROGRAM LISTING: WINGIT

THIS PROGRAM §§ DESIGNED TO CONVERT ANY SPECIFIC AIRFOIL .
INTO ANY OTHER AIRFOIL OF THE SAMF FAMILY. 1T CAN CHANGE
THE THICKNESS AS WELL AS THE AILERON SIZE AND DEFLECTION.
COORDINATE TRANSFORMATION PROGRAM ;
THIS SECTION TAKES A GIVEN INPUT FILE FOR SEARCHSE AND CONVERTS IT
TO ANOTHER IMPUT FILE FOR SEARCNHSE WITH A DIFFERENT THICKNESS AIRFCIL
COMMON/SUBS /RX(200) ,R2(200), ARX(200),AR2(200)
CHARACTER FLNAM®20
CHARACTER TITLE*80
CHARACTER FNEW*20
CHARACTER THK,AS, DA
WRI1TE(*,300)
300 FORMAT( 'ENTER THE OATA FILE THAY CONTAINS YOUR DATA')
READ(*,101) FLNAM
101 FORMAT (A20)

WVRITE(®,%) *INPUT NEW DATA TITLE'
READ(®,104) FNEW
OPEN(UNITa4, FILESFLNAM, STATUSS'OLD* )
OPEN(UNIT=7,FILE=FNEW, STATUS= ' NEW' )
READ(4,102) TITLE
104 FORMAT (A20)
READ(4,*) NALPHA
READ(4,*) ALPHA
READ(4,*) NOE,MODE
READ(&,®) AMINF,PO, 10, CREF,VKO,DAMP
READ(4,*) WIP]
READ(4,*) (RX(N),RZ(N) N=1,NIPI)
READ(4,*) SFACT -
READ(4,*) HMAX
READ(4,*) GAPNIN
READ(4,®) KCAS,NTRAL,NTRAU, I TSEPU
WVRITE(®,*) 'ENTER X/C LOCATION OF THE AILERON PIVOT! .
READ(®,*) XAP
WRITEC®,*) *ENTER WING CHORD LENGTNW IN FEET'
READ(*,*) WC
WRITE(®,%) *DO YOU WANT TO CHANGE THICKNESS? (Y OR N)'
READ '(A)', THK
IF (THK.EQ.'N') GO 10 700
WRITE(Y,®) *ENTER THE THICKNESS OF THE NEW WING STATION'
READ(®,*) wST
WRITE(®,*) 'ENTER ORIGINAL WING STATION THICKNESS'
READ(®,*) WSTO
CALL THICK(WST,NIPI,NST0)
700 CONT INUE

THIS SECTION WIL CHANGE THE RELATIVE AJLERON CHORD LENGTH
THEN NONDIMENSIONALIZE THE COORDINATES WITH RESPECT TO THE
NEW TOTAL AIRFOIL CHORD LENGTH

WRITE(®,*) ‘00 YOU WANT TO CHANGE AILERON SIZING? (Y OR N)'
READ '(A)',AS

If (AS.EQ.'N') GO YO 800

WRITE(®,*) 'BY WHAT FACTOR DO YOU WANT TO CHANGE AILERON CHORD?!'
WRITE(®,*) *1.E. A FACTOE OF 2 WILL DOUBLE THE AILERON CHORD'
READ(*,“) AILF
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CALL INCAIL(NIPI XAP AILF)

THIS SECTION WILL DEFLECT THE AILERON IN EITNER A POSITIVE (DOWNWARD)
OR NEGATIVE (UPWARD) DIRECTION

.
OO0

800 WRITE (*,®) '00 YOU WANT TO DEFLECT THE AILERON (Y OR N)'

READ‘(A)* DA
- IF (OA.€EQ.'N') GOTO 200

850 WRITE (*,*) 'ENTER AILERON DEFLECTION ANGLE®
READ (*,*) DELA
IF (DELA.€Q.0.0) GO 10 200
CALL AILDEF(DELA NIPI,XAP, AC,WC)

C

C THIS SECTION WRITES THE NEW DATA TO THE NEW DATA FILE

C THIS FILE WILL BE IN A FORM RECOGNIZEABLE TO SEARCMSE

c
200 CONT INUE
WRITEC7,111) FNEW
WRITE(7,112) NALPHA
WRITEC7,113) ALPHA
WRITECT7,114) NOE ,MODE
WRITE(7,115) AMINF,PO,TO,WC, VKO, DANP
WRITE(7,116) WIP1
WRITECT,117) (RX(N),RZ(N) N=1,NIP1)
WRITECT,118) SFACT
WRITECT, 119) HMAX
WRITE(7,120) GAPMIN
WRITE(7,121) KCAS,NTRAL,NTRAU, ITSEPU
m FORMAT (20A6)
112 FORMAT (15)
113 FORMAT (£10.1)
) 114 FORMAT (215)
115 FORMAT (10.2,F10.2,F10.1,£10.2,F10.6,F10.2)
116 FORMAT (15)
117 FORMAT (2F10.5)
. 118 FORMAT (F10.1)
119 FORMAT (F10.2)
120 FORMAT (£10.3)
i1 FORMAT (415)
102 FORMAT (ASO)
¢
END
c
SUBROUTINE THICK(WST,NIP!, WSTO)
COMMON /SUBS/RX(200),RZ(200)
DO 100 1=1,NIP]
RIC1)SR2(1)*WST/WSTO
100 CONT INUE
RE TURN
END
¢
SUBROUTINE AILDEF(DELA,NIPI,XAP,AC,uC)
c

COMMON/SUBS /RX(200),R2(200) ,ARX(200),ARZ(200)
DEL=DELA®3.14159/180.0
ANG*90.0°*3,14159/180.0

K=0

D0 200 11 NIP]

Je]-K

LF(RX(I).LT.XAP) GO TC 300

i RADX=RX(1)-XAP




ReSPRT(RADX®"®*2+R2(1)**2)
THETASATAN(RZ()/RADX)
THETAN=THETA-DEL
TF(ABSCTHETAN) . GT ,ANG)THEN
KsKe1
GO 10 200
ENDIF
RX(1)sXAP+R®COS(THETAN)
R2(1)SR*SIN(THETAN)

300 CONT I NUE
ARX(J)SRX(1)
ARZ(JISRZ(!)

200 CONTINUE
NIPI=NIP]-K
DO 400 1s1,M1P)

RX(1)=sARX(])

RZ(1)=AR2(1)
400 CONT INUE

RETURN

END
c

SUSROUTINE INCAIL(NIPI XAP AILF)

c

COMMON/SUBS /RX(200),RZ(200)
DO 500 1=1,NIPI
RXCT)=(RX(T)-XAP)Y*ALILF)+XAP
500 CONTINUE
00 600 1=1,NIP!
RXCI)I=((RX(1))/(XAP+(AILF*91-XAP)))
600 CONTINUE
XAP=XAP/(XAP+(AILF*(1-XAP)))
RETURN
END
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APPENDIX C

FIGURES
(AIRFOIL CODE DATA SUMMARY)
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